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Characteristics of the wake behind a cascade of airfoils 
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A n  analytical and experimental investigation of the near and far wake charac- 
teristics of a cascade of airfoils is reported in this paper. The measurement of 
mean velocity, turbulence intensity and Reynolds stress across the wake at 
several distances downstream of the cascade indicates that the wake is asym- 
metrical and this asymmetry is maintained even up to 2 chord length. Experi- 
ments carried out a t  three incidences reveal that the decay of the wake defect is 
strongly dependent on the downstream variation of the wake edge velocity. For 
a cascade, the decay rate of the wake defect is found to be slower than that of 
a flat plate, cylinder or symmetrical airfoil (at zero incidence). The level of turbu- 
lence and Reynolds stresses are found to be high and some comments are made 
regarding self-preservation and structure of the flow. Semi-theoretical expres- 
sions are given for the wake profile, and decay of the velocity defect, turbulence 
intensity and Reynolds stress. 

~ 

1. Introduction 
The study of the characteristics of the wakes of a cascade of airfoils has a wide 

range of significant scientific and engineering applications. It has direct applica- 
tion in the aerodynamic design of efficient and compact axial flow compressors, 
turbines and other types of turbomachinery. Moreover, knowledge of the mean 
and turbulence properties of a cascade wake are necessary to predict the rotor- 
stator interaction, the noise generated due to inlet wake and turbulence incidence 
on a rotating blade row and bending and torsional vibration of the blade row 
induced by these upstream wakes. 

Near and far wakes of a symmetrical airfoil were first investigated experi- 
mentally by Silverstein, Katzoff & Bullivant (1939), who provided empirical 
relationships for the wake decay. Preston & Sweeting (1943) and Preston, 
Sweeting & Cox (1945) carried out a systematic investigation of the character- 
istics of the wake behind an isolated airfoil and observed that a similarity in mean 
velocity profiles exists close behind the airfoil and that the wake centre-line 
velocity recovers to about 80% of the free-stream velocity within a quarter chord 
length from the trailing edge. These observations led Spence (1953) to give a 
general expression of the form 

where c is the chord length, U, the wake centre-line velocity and U, the wake 
edge velocity. x is the distance from the trailing edge. According to Spence this 
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expression holds irrespective of the geometry of the airfoil, which is in doubt. 
There is a t  present no general theoretical formulation of wake structure as a func- 
tion of physical characteristics of an airfoil or its loading. Based on his model 
equations (Bradshaw, Ferriss & Atwell 1967), Bradshaw (1970) suggested a dif- 
ferent type of approach to predict the mean velocity characteristics of the near 
wake of a symmetrical airfoil using a 'mixing length' fit to data of Chevray & 
Kovasznay (1969). Bradshaw concluded that the mixing length fit used in the 
analysis is not valid once the inner wake has spread outside the inner layer of the 
boundary layer. This type of analysis may not be carried out for the case of 
asymmetric wakes ; the mixing length may be imaginary in part of the flow. In  
the case of a cascade of cambered airfoils, no analytical treatment, that predicts 
the wake centre-line velocity, wake width or the turbulence characteristics, is 
available. Even experimental data are scarce. The only experimental data on 
mean velocity profiles in a cascade are due to Lieblein & Roudebush (1956); 
and no conclusion can be drawn from these experiments, because the measure- 
ments reported are for a very limited range of cascade flow parameters. 

In this paper an effort is made to study systematically, experimentally and 
theoretically, the near and far wake of a cascade at high Reynolds number 
( 3  x lo5). In  $ 3  a flow model, the governing equations and approximate method 
of solution are proposedfor the near and far wake. The experimental set-up and 
results are discussed in $$4 and 5, respectively. The measured quantities include 
mean velocity profiles at different incidences, turbulence intensities and Rey- 
nolds stress. Criteria and possible regions of self-preservation, the characteristic 
length and velocity scale are discussed. A general discussion and comparison 
of the wake of flat-plates, cylinders, isolated and cascade airfoils is also given. 

2. Physical nature of cascade wake 
A cascade wake is asymmetric. The asymmetry in the wake is due to loading 

on the airfoil, and the past history of the flow. Far downstream, the wakes of 
adjacent airfoils in a cascade interact, and the resultant mean velocity profile 
becomes a periodic function of y with a period S (figure 1). A cascade wake, unlike 
the wake of an isolated airfoil, encounters an adverse pressure gradient because 
the edge velocity in it decreases continuously downstream. It differs from the 
wake of a cylinder, flat plate and an isolated airfoil (symmetrical and cambered), 
not only in its mean properties, but also in turbulence properties. This subject 
will be further discussed later. 

The characteristics of a cascade wake can be classified and discussed in two 
categories, depending upon mean and turbulence properties. 

(i) Near wake. When U, - U, N U, and a t  the wake centre-line, 2 > 2 > 3. 
The wake width increases rapidly with streamwise distance downstream of the 
trailing edge. Here, u2, w2, v2 are the mean turbulence intensities along the x, x ,  y 
directions (figure I).  The x co-ordinate is along the blade span. 

(ii) Far wake. When U,- V ,  < U, (i.e. (U, - V,)z is negligible compared to TI,"). 
A t  the wake centre-line, 2 N 2 N 3. The wake width either becomes constant 
or increases very slowly. 

--- 
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Station 1 Station 2 Station 3 
x=O.OO in. x=O.56 in. x=1*2 in. 

/ 

x, u. u 

_ _ _ _ ~ _ _ _ _ _ _ _ _ _ _ _ _ _  
Cascade axis 

FIGURE I. Schematic representation of cascade wake development, with notation. 
Measuring stations: x /c  = 0,012, 0.08, 0-16, 0.24, 0.32, 0.40, 0.56 and 0.72. 

3. Theoretical considerations 
3.1. Govern ing  equations 

Consider the incompressible flow equations (in tensor notation) of mean motion 
and Reynolds stress near the trailing edge of the cascade: 

- -  Gc + q ,jm + Uk,jUiUi + (UiUk)  , j q + (U,U,Uj) ,j 

-- 
= - (~,~,~+uil),k)/P+~[(UiU.k),j3-2uk,,u~,,l, (4) 

where p ,  v, p are static pressure, kinematic viscosity and density, respectively, 
and the superscript dot denotes a time derivative. 

The dissipation equation with terms of the order Re-* retained (Lumley 1970, 
1972) can be written as 

where q2 = -,E = V U ~ , ~ U ~ , ~ .  
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The terms (utukuj),;., v ( z ~ ~ , ~ z c ~ , ~ u ~ ) , ~  may be modelled by simple gradient 
transport, while the deviatoric part of (=+Kk) may be expressed as 
(Lumley 1972) 

1 (W - Qq%9,k) 

The trace of (Ti + uZ.r),,) may be included in the gradient transport model of 
(U,),j (Lumley 1972). Here T is the time scale for return to isotropy and S,, is 
the Kronecker delta. T is given by Lumley (1970): 

Using the above modelling, (4) and ( 5 )  can be expressed as 

- -  --  
w k  + Ui , j ~ i i k  + Uk , j U ~ U ,  + ( ~ i  ~ k )  , j L$ - (uiuk), 1 u~u;. T) , j 

For a two-dimensional cascade, ( a ) ,  (3), (8) and (9) constitute a closed set of 
eleven equations in eleven unknowns. If it is assumed that the velocity correla- 
tion Uw N 2,w < Z, then the number of equations and unknowns are reduced to 
nine, and boundary conditions to be satisfied are 

y = o ,  z = o ,  
u = u,, .uv = 0. 

3.2. Mean velocity projile 
Consider (3) in a two-dimensional Cartesian co-ordinate system. Applying the 
condition of incompressibility, stationarity , boundary-layer approximation, and 
neglecting the viscous diffusion and normal stress terms, which are usually small, 
(3) can be written as (see figure 1 for symbols) 

u-+v-+- au aulv = ue-. a ue au 
ax ay ay ax 

Assuming self-preservation (experimental results described later confirm this) 
and using Townsend’s (1956) model, the velocity (U,) and length (Lo) scales are 
introduced by the relationship 

Replace iii in (10) with the eddy viscosity model 

- aU - u v = v  -. 
aY 
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Substitute (1  1) and (12) in (10) and eliminate I' in the resulting equation by the 
use of the continuity equation (2): 

where UoLo/vT = R, is the Reynolds number and is assumed to be constant. 

is satisfied only if coefficients off, f2 andf' are constant in (13), i.e. only if 
It is easy to show that the condition of self-similarity in mean velocity profile 

are constant. 
When x/c 21 0.1, the first term in (13) is small compared to 

other terms because the wake centre-line velocity recovers to about 60-70% 
(see 3 5). Furthermore, experimental results ($5)  indicate that Uo Lo is nearly 
constant in the near wake. Hence, self-similarity is attained if 

(i) Near wake. 

i d  
u; ax Uo d x  

(UeUo) = K ,  and - - (UeLo) = K,, -- Lo d 

where K,, K ,  are constants. Substituting U,L, = K3 (constant) in (15), we get 

and 

Adding (16) and (17) gives 

q)- ax = -( ; K4+K5)  17;. 

Let U, N l /xm; then, from (18), we get 

(a) When m is very small (rn 21 O), i.e. U, is nearly constant, 

uo N l/xh, Lo N xt. 

This is the case of a cylinder wake (x > 100 diameters), and the case of the near 
wake of a flat plate, when placed in a uniform stream without pressure gradient. 

( b )  When m > O(adverse pressure gradient), the wake centre-line velocity will 
recover more slowly than in case (a). This is the case in cascades of airfoils and 
compressors. If the pressure gradient is large enough (m > I) ,  the wake may 
grow rather than decay. Hill, Schaub & Senoo (1963) demonstrated this 
experimentally. 

(c) When m < 0 (favourable pressure gradient), the wake centre-line velocity 
will recover faster than in case (a).  
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Considering the momentum integral relationship relating the velocity defect 
in the wake to the profile drag, it can be easily shown that the constant of 
proportionality in (19) is a function (to first order) of the coefficient of drag 
( C j )  of the cascade of blades. 

Thus, a general expression of the form 

will predict the wake centre-line velocity recovery in near wakes of cascades of 
airfoils. The value of K from various experimental data (including that of 3 5) is 
found to be 1.25. zo/c is the virtual origin. In  all practical cases, xo/c for cascades 
of airfoils is between 0.02 and 0.03 (Lieblein & Roudebush 1956). Here ( $ 5 ) ,  it  
is found to be 0.02. Thus, the final expression for the wake centre-line velocity is 

(ii) Par wake. When 77,- U, < U,, the wake width is nearly equal to the 
spacing(s). Hence, d.L,/dx N 0. The pressure gradient effects are also negligible 
in the case of the far wake of a cascade. Therefore, from (15)) we have 

1 
(UeUo) = K ,  or Uo N -. Lo d 

Ug dx X 
-- 

The constant of proportionality can be evaluated from the momentum integral 
equation (33), and from the periodic nature of the solution. It can easily be shown 
that the wake centre-line velocity in this case recovers as 

where the constant K ,  depends upon the turbulence characteristics and the wake 
width. If the spacing and the turbulence characteristics in the far wake of a 
cascade are similar to those in the far wake of an equally spaced cylinder, then 
(Schlichting 1968, p. 695) 

K --!-(!?)' 
- 8773 1 ' (24) 

where I is the mixing length. For low free-stream turbulence ( < 1 %) K6 is found 
to be 0.40 (Schlichting 1968). 

3.3. Turbulence quantities 
The turbulence characteristics of the near and far wakes of a cascade are quite 
different. We shall discuss them separately. 

(i) Near wake. We shall use (8) to determine the turbulence intensities at  the 
wake centre-line very near the trailing edge of the cascade. Assume that the flow 
is steady, and the development of flow is confined to a narrow region (a/az < a/ay). 
Then the quantities with dots over them vanish. Near the wake centre-line E ,  

u2, v2, w2 (and hence q2) are nearly constant across the wake. Moreover, .Ilv = 0, 
- - -  
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while d U / d y  need not necessarily be zero, but will be small. Using ( Z ) ,  applying 
these conditions to (8) and rearranging the terms, we get 

Qualitatively, (25 )  suggests that (since dU,/dx is always positive) 

d? d 2  1x1 < Id*-! < !El- 
Far downstream (x/c  > l), the turbulence in a wake tends to be nearly isotropic, 
i.e. u2 N w2 E v2. If there are no abrupt changes (i.e. the process is continuous 
from x /c  < 1 to x /c  > l), we conclude that 3 < 2 < 2 near the wake centre-line. 
Experimentally (§ 5) it  is found that 

- - -  

- 
[ g ~ m a x / [ v ~ ~ m a x  = 4-84. (26) 

(ii) P a r  wake. In  a far wake, the width of the wake becomes equal to the 
spacing. As a result, the wakes of adjacent airfoils interact, and are no longer 
separated by the inviscid velocity profile. The peak turbulence intensity and 
shear stress occur away from the wake centre-line. Therefore, it  is not possible to 
calculate the variation of turbulence intensity at  the wake centre-line by the 
proposed method. However, it is possible to calculate the relative magnitude of 
the turbulence intensities away from the wake centre-line in the region of 
maximum shear, where the intensities are nearly independent of y. Since the 
wake edge velocity is nearly constant far downstream, (8) takes the forms 
(neglecting z1w and VW) 

It is evident from (29) and (30) that 3 = 2. Substituting this result and (7 )  
into (29) or (30), it can be shown that u2/v2 = 2. Similarly, using these results in 
(27 )  and (28), it  can be shown that = 0.354. From the experimental data 
at  x/c  = 0.72 ($5),  it is found that 

-- 

- 
E~Irn,/EV2lmax = 2-5, 

and the wake data near the half-wake width indicate that (figure 14) 

Z/Z= 0.515. 
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4. Experimental equipment, method and instrumentation 
Measurements of mean velocity and turbulence quantities were carried out in 

a wake region close behind a cascade of blades a t  various axial and transverse 
locations (see figure 1). The prime object of these measurements was to study the 
decay characteristics of mean velocity and turbulence along the streamwise axis, 
their variation across the wake and their relative order of magnitude. 

A subsonic cascade tunnel with porous side walls (for boundary-layer 
suction), designed and constructed a t  the Applied Research Laboratory of the 
Pennsylvania State University, was used in these experiments. The cascade con- 
sisted of seven blades of span I = 14in. and chord c = 7in.; it  was possible to vary 
the incidence of the blades. The blade profile used in these experiments is shown 
in figure 1. The blade profiles are of the loaded-trailing-edge type, and are very 
similar to the NASA-65 ( S . L I J ~ ~ )  10 blade section. 

Mean velocities were measured at an inlet angle 8, = 45", solidity c/S = 1.505, 
incidence i = -6", 0", +2" (the corresponding flow-turning angles being 22", 
28', 30", respectively). The turbulence quantities were measured a t  only i = - 6'. 
The upstream velocity U, and turbulence intensity were 80ft s-l and 0.16 %, 
respectively (see figure 1). Measurements were taken a t  nine downstream stations 
(x/c = 0, 0.012, 0.08, 0.16, 0-24, 0.32, 0.40, 0.56, 0.72), as shown in figure 1. 

Two types of traversing mechanisms were used for measuring the mean 
velocities (using a five-hole prism-shaped probe) across the wake and turbulence 
quantities (using a cross-wire probe). Both types of traversing mechanisms had 
three degrees of freedom: linear motion along x and y axes (figure i), and rotatior, 
of the probe about its own axis. 

A five-hole prism-shaped probe was used in combination with three pressure 
transducers, to measure the resultant direction of the flow and the stagnation 
and static pressures. The output from the transducers was fedinto a data-process- 
ing system, to give the desired three quantities. Mean velocity measurements 
were carried out across the wake a t  four or five different axial locations (see 
figure 1). 

Two sensor cross-wires, with nearly equal resistance (R, = 10.85 a, 
R, = 10.84Q) and a length to diameter ratio of 250, were used to measure 
turbulence. No linearizers were used, since the intensity of the turbulence was 
low. Output from the summing unit was fed to r.m.5. voltmeters, which were 
connected to digital voltmeters through a three-way key. Measurements were 
carried out across the wake at eight different axial locations at incidence - 6" (see 
figure 1). The distance between the mounts and the point at  which the data were 
taken was far enough (1 ft) to ensure least interference with the flow. 

5. Experimental results and comparison with predictions 
5 .  I. Meun velocity projile 

As already stated, mean velocity profile measurements in the wake of a cascade 
were carried out for three incidences ( - 6", Oo, + 2"). The choice of incidence was 
based on the fact that there was sudden rise in the coefficient of drag beyond the 



1 .o 

0.75 

b- 
5 0.50 

0.35 

0.0 

Characteristics of wake behind a cascade of airfoils 7 1 5  

I 1 1 

+ 0.2 +0.1 0.0 -0.1 - 0.2 

I .O 

0.75 

bW ’ 0.50 
- 

0.25 

0.0 
$0.2 0.0 -0.1 - 0.2 

YIC 

FIGURES 2(a, b ) .  For legend see page 716. 



716 R. Raj and B. Laksbminarayana 

1.0 

0.75 

bU 
!2 0.50 
- 

0.25 

0.0 
+ 0.2 0.0 -0.1 - 0.2 3 

Y l C  
FIGURE 2. Mean velocity profile at (a) O", (b )  2 O ,  (c) - 6" incidence. 
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-6' and f2' incidence for the cascade under investigation. Plots of mean 
velocity profile across the wake at  different axial locations and at different 
incidences are shown in figures 2 (a), ( b )  and (c).  

At the trailing edge (x/c = 0*0), the profiles exhibit the characteristics of 
a boundary layer. The profiles are nearly symmetrical for zero incidence, but 
show appreciable asymmetry at other incidences (figures 2 (b ) ,  (c ) ) .  This asym- 
metry is preserved even a t  x/c = 0.56. The boundary-layer thickness near the 
trailing edge is greater on the suction surface for incidences i = 0 and 2", and the 
trend is reversed for incidence i = - 6'. 

(i) Self-similarity. In  figures 3 (a),  (b) and (c) an attempt is made to reduce the 
mean velocity data to a single curve, using the scaling velocity as the difference 
between the maximum and minimum velocity (U, = Ue- q), and two different 
scaling lengths (Los and Lop), which are distances on the suction and pressure 
sides of the wake centre-line, from the point of minimum velocity to a point 
where the velocity is +(Ue - UJ. 

Figures 3 (a) ,  (b) and (c) show the existence of similarity in velocity profiles, 
when the velocity and length scales described above are used. The profiles also 
become symmetrical about the wake centre-line. The mean velocity can be 
represented by an expression of the type (1 - v*)~ ,  where 7 = y /L ,  or y/Lop. The 
length scales L, and Lop are different in the present case because of the past 
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FIGURE 3. Similarity in mean velocity profiles. For symbols see caption to figure 2. 
-, ( l - ~ $ ) ~ .  (a) i = Oo, (b) i = 2", (c) i = -6". 
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FIGURE 4. Variation of UoLoIUetc with downstream distance. 
Incidences: ., i = - 6'; A, 0"; 0 ,  2". 

history of the flow. However, in the case of the cylinder, flat plate or symmetrical 
airfoil at zero incidence, Lo, = Lop. 

The ratio UoLo/U,, c is found to be nearly constant at  all axial locations and 
incidences (figure 4). This confirms the self-similarity assumption made in 
deriving ( 1.9). 

(ii) Wake centre-line velocity. Figures 5 (a)  and (b) show the variation of the 
wake centre-line velocity with downstream distance a t  various incidences. 
Lieblein & Roudebush's (1956) data for a cascade, Chevray & Kovasznay's (1969) 
data for a flat plate and the data of Preston et al. (1945) for an isolated airfoil are 
shown compared with the authors' cascade data in figure 5 (a) .  

It is clear, from figure 5 (b ) ,  that the experimental results are in excellent agree- 
ment with the theoretical expression (20). Values of K and xo/c are found to be 
1.25 and 0.02, respectively. The values of the coefficients of drag used for deter- 
mining the constant K in the present investigation are obtained experimentally. 
In  the present investigation, 4( - m + 1) changes from 0.39 to 0.487 for the change 
in incidence from - 6" to + 2'. It is interesting to note that the value of K reported 
by Spence (1953) for an isolated airfoil and the authors' for a cascade of airfoils 
are about the same. While Spence's expression for U, is valid for zero pressure 
gradient (m = 0) ,  the authors' equation (21) for a cascade is more general. 

A few important observations can be made from figure 5 (a)  about the mean 
properties of the cascade near wake. (a) The wake centre-line velocity is 
recovered to within 70-80 % between the trailing edge and a position half a chord 
length downstream. (b)  The wake of a cascade decays slower than the wake of 
an isolated airfoil. (c) Wake decay of a cascade depends on solidity and incidence. 
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FIGURE 5. Variation of wake centre-line velocity with downstream distance. For incidences 
see caption to figure 4. Plot (b)  is logarithmic. 
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FIGunE 6. Variation of wake edge velocity with downstream distance. For incidences see 
caption to figure 4. 0, isolated airfoil (Preston et al.) : ., A, 0 ,  cascade (authors). Edge 
velocity at  trailing edge : __ , u,, - 1 / ~ 0 1 6 .  -.- 1 / ~ 0 ' 0 8 .  ----, l / sO"J3.  

' (d )  Wake decay of a cascade depends on the geometry of the airfoil used. This is 
clear from the comparison of the wake of a flat plate and the symmetrical $$ 
Piercy airfoil (Preston et al. 1945) at zero incidence. 

No measurements were carried out far downstream (x / c  > I) .  Therefore, it is 
difficult to comment on the accuracy of (23). However, (23) for C, = 1 reduces 
to the case of the far wake of an equally spaced row of bars, investigated by 
Olsson (1936), who showed that there exists good agreement between experi- 
mental and theoretical results. 

(iii) Wake edge velocity U,. The wake edge velocity measured in the cascade at 
various incidences is shown plotted and compared with isolated airfoil data in 
figure 6 (a). It is evident that the wake edge velocity for a cascade decreases first 
very sharply near the trailing edge, then at  a much slower rate. This trend is easily 
explained on the bases of the continuity equation 

Ue,(X,-6*) = const., 
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where U,, is the wake edge velocity at the trailing edge, 8" is the displacement 
thickness, and 8, is defined in figure 1. 6* decreases rapidly near the trailing 
edge, and at  a slower rate further downstream. The wake edge velocity for an 
isolated airfoil increases downstream, while that for a cascade decreases 
(figure 6 ( a ) ) .  

The edge velocity can be expressed as (figure 6 ( b ) )  

where the value of m is found to be - 0.028 for an isolated airfoil and 0.16, 0-08 
and 0.03 for a cascade, at  incidences - 6", 0" and 2O, respectively. Based on this, 
the exponent of (x / c  +x&) in (21) should be 0.42, 0-46 and 0.485 for cascade of 
blades a t  - 6", 0" and 2", respectively. Values of this exponent, obtained directly 
from the wake measurements (figure 5 (b) ) ,  are found to be 0.39, 0.46 and 0.487, 
respectively. Thus, the agreement between the theoretically predicted decay rate 
(20) and the measured rate is good. This clearly indicates the effect of an external 
pressure gradient (m =I= 0) ,  in particular on wake decay. 

(iv) Wake width. A logarithmic plot of the variation of the wake width a t  
various distances downstream is shown in figure 7. It is interesting to note that 
most of the wake-width data satisfy the relationship 

b-bo -- - 1 . 3 5 ( ~ / ~  + Z ~ / C ) O . ~ ,  

c c j  
where b = wake width, b, its value a t  the trailing edge. The values of C, used in 
figure 7 are the measured values. The points up to  x / c  = 0.35 seem to be well 
represented by (31), and the exponent in that equation is nearly 0-5 beyond this 
point. 

Theoretically, the exponent in (31) should be 0-58, 0.54 and 0.516 ((19) with 
m = 0.16, 0.08 and 0.03) for - 6", 0" and 2", respectively. The discrepancy 

F L M  61 46 
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216 

E'rcVaE 8. variation of shape factor H and momenturn thickness O* uith downstream 
tlistanco at  incidence 0". 0, is~lnted airfoil (Preston et al. 1945) ; 0, flat plate (Chevray 
PC Kovasznay 1969) ; A, cascade (authors) ; x . equation (34) (prodictcd). 

between theory and experiment may be due to the difficulty in assessing the 
value of b from the measurements. Nevertheless, it  is evident that the widely used 
representation of wake width ( b  - x4) is not accurate, especially for a cascade 
make with a pressure gradient in the external flow. 

(v) Momentum thickness 0" and shape <factor H .  A plot of the variation of the 
momentum thickness B", given by 

and tjhe shape factor H = P / O  with the downstream distance from the trailing 
edge is given in figure 8. The magnitude of the momentum thickness first in- 
creases, then becomes almost constant, while the shape factor decreases first, 
then becomes nearly constant. Therefore, the maximum of mixing losses takes 
place very close to the trailing edge. 

The characteristic behuviour of 8" is explained on the basis of the well-known 
von KBrrn&n momentum integral equ i  cu t' 1011 

do" 0 * a q  70 
- + ( H + 2 ) , -  = - 
dz QC dz pU,Z 
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In  a wake, skin friction is zero, therefore (32) reduces to  

a8 * 8' due 
- + ( H + 2 ) - -  = 0 .  u, ax ax (33) 

Equation (33) shows that increase or decrease of 8" depends on variation of U,. 
If U, increases, then 8" decreases (isolated), if U, decreases, then 8" increases 
(cascade). This is evident from figure 8. 

The variation of the shape factor with downstream distance from the trailing 
edge of an isolated airfoil was given by Spence (1 953) : 

1-- = l--  (4Ox/c+l)-P, ( 3 ( 4 (34) 

where Ht is shape factor at  the trailing edge. The same expression accurately 
predicts the variation of H in a cascade near wake (figure 8). 

Since H can be predicted and U, is known, 8" for the cascade can be predicted 
from (34). 

5.2. Turbulence quantities 

(i) Turbulence intensity. Figures 9 and 10 plot turbulence intensities in the 
streamwise ((?)$) and transverse ((v")*) directions in a cascade wake a t  
different axial locations. Initially, the curves are asymmetric about the wake 
centre-line, and the asymmetry is retained in the region of investigation 
(0 < x/c c 0-72). The asymmetry about the wake centre-line is due to the past 
history of the flow. However, far downstream it may disappear, because the flow 
tries to forget its past history. Maximum turbulence intensity in the present case 
occurs almost at the wake centre-line. The reasons for this are as follows. Exactly 
a t  the wake centre-line, the Reynolds stress is either zero or very small. The aniso- 
tropy introduced into the flow owing to the presence of a body is an additional 
source of turbulence intensity at the wake centre-line. Conversion of mean-flow 
energy into turbulence energy takes place because of diffusion along the velocity 
gradients. Transport cannot bring kinetic energy from the centre of the wake, 
because the gradients of turbulence intensities are negligible there. Therefore 
energy due to advection and production is completely dissipated there. At 
the same time, the region of maximum shear close to the wake centre-line will 
behave in a different way. Because gradients are large, most of the energy 
transported to the outer part of the wake originates here, while the remainder 
is dissipated. Hence, it is not unlikely that maximum turbulence intensity will 
occur a t  the wake centre-line in the present situation. 

However, far downstream of the cascade, maximum turbulence intensity will 
not usually occur at the wake centre-line, because production due to anisotropy 
is negligibly small there, and turbulence production peaks (in the region of 
maximum shear) away from there. Thus, there will be a gradient of the transport 
of energy to the outer part of the wake; hence, dissipation will be considerably 
less than in the case of the near wake. 

46-2 



724 8. Raj and B. Lak8hminarayana 

t-0.3 + 0.3 +0.1 0.0 -0.1 - 0.2 -0.3 

Y I C  

FIGURE 9. Variation of the streamwise component of turbulence intensity (T' = (21")i/U) 
across the wake (i  = - 6"). 

Z/C 0 0.08 0.16 0.24 0.32 0.40 0.72 

0 a 0 0 A O I X I  

+ 0.2 4-0.1 0.0 -0.1 -0.2 -0.3 

- 
FIGURE 10. Variation of the normal oomponent of intensity (T, = (v2)*/U) across the wake 

(i = - So). For symbols see caption to  figure 9. 

The distance downstream a t  which the peak of turbulence intensity will no 
longer occur at the wake centre-line depends on the maximum thickness-to- 
chord-length ratio in a cascade of slender bodies. For a very thin flat plate, the 
peak of turbulence intensity may not occur a t  the wake centre-line, even close 
to the trailing edge of the plate (Cheaay & Kovasznay 1969). 

The decay rate of the maximum of T, ((g)t/ U )  and T, ( (vT)*/ U )  with distance 
downstream from the trailing edge is shown in figure 12. As is evident from 
figure 12, l?!&= decays faster than Turns, in the region of investigation 
(0 < x / c  < 0.72). This confirms the earlier conclusion, based on theoretical con- 
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Yb 
FIGURE 1 1 .  Variation of the shear stress (7/,9Us) across the wake (i = - 6'). 

z/c 0 0.08 0.16 0.24 0.32 0.40 0.72 

o v  0 a .A o [ x 1  
siaerations 01 $3.6, ("0). ' ine vanation 01 ikrnaX ana q,rnar in a cascaae can De 
represented by 

Turn,% = ~ [ x / c  + z ~ / c ] - ~ - ~ ~ ,  

qrnm yo = 4 . 6 [ ~ / ~  + &,/c]-"". 
(35) 

(36) 

All intensities are normalized with respect to local mean velocity. The value of 
the virtual origin [xA/c] in this case is found to  be 0.05. 
T,,,, is found to be roughly twice as great as Turn,, near the trailing edge 

because of wall constraints, as expected. Further downstream, they tend to 
become equal (figures 9, 10 and 12). The qualitative nature of the behaviour of 
turbulence intensities at the wake centre-line is consistent with (26). Although 
the turbulence intensity ( 2 ) 3  was not measured, it is predicted that (w2) 3 wil 
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FIGURE 12. Decay characteristics of the maximum turbulence intensities (percentage) and 
Reynolds stress in the cascade. 0,  T,,,,; W, TvmX: A, [?/pU2Imx. - , equation (35) ; 
-.- , (36); ----, (37). 
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FIGURE 12. Decay characteristics of the maximum turbulence intensities (percentage) and 
Reynolds stress in the cascade. 0,  T,,,,; W, Tvmx: A, [?/pU2Imx. - , equation (35) ; 
-*-, (36); ----, (37). 

FIGURE 13. Decay characteristics of the maximum turbulence intensities for flat plate 
(Chevray & Kovasznay 1969). 0 ,  Turn=%; M, T+wa,%. __ , Turnax N ~ / x O ' ~ ~ ~ ;  ----, 
Tvmar N 1/XO'". 

be cIoser to (2)4 than to ( 2 ) a .  But, away from the trailing edge (x / c  > 0-1), it will 
take a value intermediate between (G)* and (3)*. T%=, and c- in the case of 
a flat plate (Chevray & Kovasznay 1969) decay with the same power law as a 
cascade, i.e. (35) and (36) (see figure 13). 

(ii) Reynolds stress. Figure 11 shows the distribution of Reynolds stress in a 
wake behind the cascade at  different axial locations. Reynolds stress changes sign 
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FIGURE 14. Ratio of shear strevs to turbulence intensitynear half the wake width (i = - 6"). 
For symbols see caption to figure 9. 

abruptly at the wake centre-line, and maximum shear stress occurs very close 
to it. Maximum Reynolds stresses on either side of the wake centre-line need not 
be the same, and are in fact found to be different near the trailing edge (figure 11) 
of the cascade of cambered airfoils investigated here. However, away from the 
trailing edge, this difference disappears. The maximum Reynolds stress decreases 
rapidly along the streamwise direction, up to a distance of x/c = 0.32 (figure 11). 
But, for x / c  > 0.32, the rate of decrease is small. Variation of [r/pU2Imax with 
distance downstream is given by (figure 12) 

[-&2]max= 0.005 [ x / c +  0.05]-0.72. (37) 

Near the wake centre, the shear stress varies linearly across the wake. A very 
sound qualitative explanation for such behaviour was given by Townsend (1956) 
for the far wake. The same reasoning applies also to the near wake. (&/ay)y=o 
decreases in the streamwise direction, and the region of maximum shear is dis- 
placed away from the wake centre-line with streamwise distance downstream. 

In  the present investigation, it is found that the point where aU/@ = 0 (the 
wake centre-line) need not be the same as where the Reynolds stress is zero. This 
clearly indicates that the mixing length hypothesis is not valid for predicting the 
mean and turbulence quantities in such a region. The variation of -uV/u2 
with distance downstream from the trailing edge is shown in figure 14, and is 
found to be constant (0.515) only near the half-wake width. This ratio is not 
constant across the entire wake. The constant value is found to be a little higher 
than in flows with uniform distortion of homogeneous turbulence (0*4), or the 
theoretical value (0.354) predicted in 0 3.3. 
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FIGURE 15. Variation of P (equation (39)) with downstream distance. 

(iii) Bey-preservation. An attempt was made to correlate turbulence intensities 
and Reynolds stress data using the same velocity and length scales as for mean 
velocity. The data could not be reduced to a single curve as in the case of the 
mean-velocity profile. This shows that the flow is not completely self-preserved. 
An understanding of such behaviour can be reached by considering the 
turbulence-energy equation. In  two-dimensional mean motion, the two energy- 
production terms can be written as 

- au - au -uv- and (3-v2)--. 
aY ax 

The hs t  of these is usually ignored in homogeneous, distorted turbulence, while 
the second occurs in the description of an isotropic far wake. Therefore, the term 
introducing non-self-preservation into the flow is the second. Since at  the trailing 
edge of the cascade there is production of turbulence intensity and the flow is 
anisotropic, the second term is of comparable magnitude to the first term. The 
production of turbulent energy differs for various bodies, and depends on the 
shape of the body. In  the case of bluff bodies, the second term is of a much higher 
order (three or four times) than in the case of a streamlined body or a flat plate. 
This is the reason why, in the case of a streamlined body, self-preservation is 
attained much earlier than in the case of bluff bodies. Reynolds (1962), using 
the above two energy-production terms, deduced a criterion for self-preservation: 
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where Lo is half the wake width. If P > 1 (i.e. in shear-dominated flows), the 
flow tends to be nearly self-preserved. But for complete self-preservation, P must 
have a much greater value ( > 10). If P < 1, the flow is not self-preserved. Variation 
of P downstream in the streamwise direction of the cascade is shown in figure 15. 
This shows that from xIc N 0-24 onwards the wake is nearly self-preserved. It is 
interesting to note that P varies linearly with distance downstream in the near 
wake. 

6. Discussion and conclusion 
The experimental and analytical investigations reported in this paper indicate 

that the wake of a cascade of airfoils differs from that of a cylinder, flat plate or 
isolated (symmetrical) airfoil at  zero incidence, in several respects. 

(i) The wake is asymmetrical. When two different length scales are used, one 
for each side of the wake, mean velocity profiles become symmetrical about the 
wake centre-line. 

(ii) The wake edge velocity changes continuously, giving rise to either slower 
decay of the wake defect (as in the case of a cascade with decelerating free-stream 
flow) or faster decay (as in the case of accelerating mean flow). The mean velocity 
profle is of the type (1 - ~ f ) ~ ,  where 7 = y/L@ or y/Lo,, and Lo,, Lop are length 
scales on the suction and pressure side of the wake, respectively. The wake centre- 
line velocity is well represented by (21), and the width of the wake by (31). 

(iii) Turbulence intensities are higher than those of a flat-plate wake, even 
though decay characteristics ((35) and (36)) are nearly the same. Maximum 
Reynolds stress and decay characteristics are given by (37). 

The change in cascade parameters (e.g. solidity CIS and incidence i) has a dual 
effect. Solidity is likely to change the wake edge velocity (m in the equation 
U, N x - ~ )  and the profile drag. Both of these change the wake decay charac- 
teristics. But in the far wake, where U, - const., the velocity defect a t  the wake 
centre-line is inversely proportional to solidity (see (23)). The incidence and 
camber effects (which directly control boundary-layer growth, blade loading and 
drag coefficient) would similarly influence the decay rate through the parameters 
C, and m. The results reported here adequately demonstrate this. 

Schlichting (1968, p. 695), while investigating the far wake of a cascade of 
circular cylinders, derived a theoretical expression for the mean velocity, which 
shows no dependency on C,. This is due to the fact that the C, for a circular 
cylinder in the Reynolds number range of 104-105 is nearly unity, while that of 
a cascade of blades is two or three orders of magnitude less. 

The peak in turbulence intensity may occur at the wake centre-line in a cascade, 
depending on the thickness of the blade and the downstream distances. Experi- 
mental data of Reynolds (1962) show a similar trend. For large-diameter 
cylinders, the interaction of the mean-velocity defect and the turbulence 
intensity is delayed, resulting in the occurrence of the turbulence peak at the 
wake centre-line. However, the turbulence intensity peak will be away from the 
wake centre-line for the same cylinder a t  larger downstream distances. 

No attempt is made in this paper to investigate the effect of inlet turbulence. 
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At higher levels of free-stream turbulence, the wake decay characteristics may 
be different (Eagleson, Huval & Perkins 1961). The data of Eagleson et al. for a 
flat-plate wake in a water tunnel indicate that the near-wake decay law changes 
from x-& to x-l when the turbulence level is around 4-7 yo. This is an area where 
further research is needed. 

The authors wish to express their gratitude to Dr John Lumley for many 
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the experimental set-up. This work was sponsored by the Applied Research 
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